CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > Turbulence dissipation rate

Turbulence dissipation rate

From CFD-Wiki

(Difference between revisions)
Jump to: navigation, search
(Finally fixed the \nu and \equiv problems in the LaTeX rendering)
(Abbreviations for units no longer italicized.)
 
(2 intermediate revisions not shown)
Line 1: Line 1:
-
Turbulence dissipation, <math>\epsilon</math> is the rate at which [[turbulence kinetic energy]] is converted into thermal internal energy. The SI unit of <math>\epsilon</math> is <math>J / kg s = m^2 / s^3</math>.
+
Turbulence dissipation, <math>\epsilon</math> is the rate at which [[turbulence kinetic energy]] is converted into thermal internal energy. The SI unit of <math>\epsilon</math> is <math>\mathrm{J} / (\mathrm{kg} \cdot \mathrm{s}) = \mathrm{m}^2 / \mathrm{s}^3</math>.
<math>\epsilon \, \equiv \, \nu \overline{\frac{\partial u_i'}{\partial x_k}\frac{\partial u_i'}{\partial x_k}}</math>
<math>\epsilon \, \equiv \, \nu \overline{\frac{\partial u_i'}{\partial x_k}\frac{\partial u_i'}{\partial x_k}}</math>
 +
 +
 +
For compressible flows the definition is most often slightly different:
 +
 +
<math>\epsilon \, \equiv \, \frac{1}{\overline{\rho}} \overline{\tau_{ij} \frac{\partial u_i''}{\partial x_j}}</math>
 +
 +
Where the viscous stress, <math>\tau_{ij}</math>, using Stokes law for mono-atomic gases, is given by:
 +
 +
<math>\tau_{ij} = 2 \mu S^*_{ij}</math>
 +
 +
where
 +
 +
<math>S^*_{ij} \equiv  \frac{1}{2} \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \frac{1}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij}</math>

Latest revision as of 01:00, 11 April 2015

Turbulence dissipation, \epsilon is the rate at which turbulence kinetic energy is converted into thermal internal energy. The SI unit of \epsilon is \mathrm{J} / (\mathrm{kg} \cdot \mathrm{s}) = \mathrm{m}^2 / \mathrm{s}^3.

\epsilon \, \equiv \, \nu \overline{\frac{\partial u_i'}{\partial x_k}\frac{\partial u_i'}{\partial x_k}}


For compressible flows the definition is most often slightly different:

\epsilon \, \equiv \, \frac{1}{\overline{\rho}} \overline{\tau_{ij} \frac{\partial u_i''}{\partial x_j}}

Where the viscous stress, \tau_{ij}, using Stokes law for mono-atomic gases, is given by:

\tau_{ij} = 2 \mu S^*_{ij}

where

S^*_{ij} \equiv  \frac{1}{2} \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \frac{1}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij}

My wiki