CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > Linear wave propagation

Linear wave propagation

From CFD-Wiki

(Difference between revisions)
Jump to: navigation, search
Line 3: Line 3:
</math>
</math>
== Domain ==  
== Domain ==  
-
x=[0,1]
+
:<math> x=[-10,10] </math>
== Initial Condition ==  
== Initial Condition ==  
-
:<math> u(x,0)=e^{-360*{(x-0.25)}^2}</math>
+
:<math> u(x,0)=exp[-ln(2){(\frac{x-x_c}{r})}^2]</math>
== Boundary condition ==  
== Boundary condition ==  
-
u[0]=0,u[imax]=u[imax-1](x[imax]=1.0)
+
:<math>u(-10)=0</math>
== Exact solution ==
== Exact solution ==
-
:<math> u(x,t)=e^{-360*{((x-c*t)-0.25)}^2}</math>
+
:<math> u(x,0)=exp[-ln(2){(\frac{x-x_c-ct}{r})}^2]</math>
== Numerical method ==  
== Numerical method ==  
-
c=1,t=0.25
+
:<math>c=1,dx=1/6,dt=0.5dx,t=7.5</math>
 +
:<math> \mbox{Long wave  :}\frac{r}{dx}=20</math>
 +
:<math> \mbox{Medium wave: }\frac{r}{dx}=6</math>
 +
:<math> \mbox{Short wave : } \frac{r}{dx}=3</math>
 +
=== Space ===
 +
==== Explicit Scheme (DRP)====
 +
:<math> {(\frac{\partial u}{\partial x})}_i=\frac{1.0}{dx}\sum_{k=-3}^3 a_k u_{i+k} </math>
 +
The coefficients can be found in Tam(1992).At the right boundaries use fourth order central difference and fourth backward difference.At left boundaries use second order central difference for i=2 and fourth order central difference for i=3.The Dispersion relation preserving (DRP) finite volume scheme can be found in Popescu (2005).
 +
====Implicit Scheme(Compact)====
 +
:Domain: <math>\alpha v_{i-1} + v_i + \alpha v_{i+1}=\frac{a}{2h}(u_{i+1}-u_{i-1}) </math>
 +
:Boundaries: <math> v_1+\alpha v_2=\frac{1}{h}(au_1+bu_2+cu_3+du_4) </math>
 +
where v refers to the first derivative.For a general treatment of compact scheme refer to Lele (1992).In this test case the following values are used
 +
:<math> \mbox{Domain} \alpha=0.25 , a=\frac{2}{3}(\alpha+2) </math>
 +
:<math> \mbox{Boundary} \alpha=2 ,a=-(\frac{11+2\alpha}{6}),b=\frac{6-\alpha}{2},c=\frac{2\alpha-3}{2},d=\frac{2-\alpha}{6} </math>
 +
 
== Results ==
== Results ==
 +
[[Image:Initial_condition.png|450px]]
[[Image:Initial_condition.png|450px]]
[[Image:Result_wave.png|450px]]
[[Image:Result_wave.png|450px]]
== Reference ==
== Reference ==

Revision as of 07:14, 14 January 2006

Contents

Problem definition

 \frac{\partial u}{\partial t}+ c \frac{\partial u}{\partial x}=0

Domain

 x=[-10,10]

Initial Condition

 u(x,0)=exp[-ln(2){(\frac{x-x_c}{r})}^2]

Boundary condition

u(-10)=0

Exact solution

 u(x,0)=exp[-ln(2){(\frac{x-x_c-ct}{r})}^2]

Numerical method

c=1,dx=1/6,dt=0.5dx,t=7.5
 \mbox{Long wave  :}\frac{r}{dx}=20
 \mbox{Medium wave: }\frac{r}{dx}=6
 \mbox{Short wave : } \frac{r}{dx}=3

Space

Explicit Scheme (DRP)

 {(\frac{\partial u}{\partial x})}_i=\frac{1.0}{dx}\sum_{k=-3}^3 a_k u_{i+k}

The coefficients can be found in Tam(1992).At the right boundaries use fourth order central difference and fourth backward difference.At left boundaries use second order central difference for i=2 and fourth order central difference for i=3.The Dispersion relation preserving (DRP) finite volume scheme can be found in Popescu (2005).

Implicit Scheme(Compact)

Domain: \alpha v_{i-1} + v_i + \alpha v_{i+1}=\frac{a}{2h}(u_{i+1}-u_{i-1})
Boundaries:  v_1+\alpha v_2=\frac{1}{h}(au_1+bu_2+cu_3+du_4)

where v refers to the first derivative.For a general treatment of compact scheme refer to Lele (1992).In this test case the following values are used

 \mbox{Domain} \alpha=0.25 , a=\frac{2}{3}(\alpha+2)
 \mbox{Boundary} \alpha=2 ,a=-(\frac{11+2\alpha}{6}),b=\frac{6-\alpha}{2},c=\frac{2\alpha-3}{2},d=\frac{2-\alpha}{6}

Results

Initial condition.png Result wave.png

Reference

My wiki