Skin friction coefficient
From CFD-Wiki
(→To do) |
|||
(9 intermediate revisions not shown) | |||
Line 5: | Line 5: | ||
Where <math>\tau_w</math> is the local [[wall shear stress]], <math>\rho</math> is the fluid density and <math>U_\infty</math> is the free-stream velocity (usually taken ouside of the boundary layer or at the inlet). | Where <math>\tau_w</math> is the local [[wall shear stress]], <math>\rho</math> is the fluid density and <math>U_\infty</math> is the free-stream velocity (usually taken ouside of the boundary layer or at the inlet). | ||
- | For a turbulent boundary layer several approximation formulas for the local skin friction can be used: | + | For a turbulent boundary layer several approximation formulas for the local skin friction for a flat plate can be used: |
1/7 power law: | 1/7 power law: | ||
- | <math>C_f = 0.0576 Re_x^{-1/5} \quad \mbox{for} \quad 5 \cdot 10^5 < Re_x < 10^7 </math> | + | :<math>C_f = 0.0576 Re_x^{-1/5} \quad \mbox{for} \quad 5 \cdot 10^5 < Re_x < 10^7 </math> |
- | 1/7 power law with experimental calibration (equation 21.12 in [ | + | 1/7 power law with experimental calibration (equation 21.12 in [[#References|[3]]]): |
- | <math>C_f = 0.0592 \, Re_x^{-1/5} \quad \mbox{for} \quad 5 \cdot 10^5 < Re_x < 10^7</math> | + | :<math>C_f = 0.0592 \, Re_x^{-1/5} \quad \mbox{for} \quad 5 \cdot 10^5 < Re_x < 10^7</math> |
- | Schlichting (equation 21.16 footnote in [ | + | Schlichting (equation 21.16 footnote in [[#References|[3]]]) |
- | <math>C_f = [ 2 \, | + | :<math>C_f = [ 2 \, log_{10}(Re_x) - 0.65 ] ^{-2.3} \quad \mbox{for} \quad Re_x < 10^9 </math> |
- | Schultz-Grunov (equation 21.19a in [ | + | Schultz-Grunov (equation 21.19a in [[#References|[3]]]): |
- | <math>C_f = 0.370 \, [ | + | :<math>C_f = 0.370 \, [ log_{10}(Re_x) ]^{-2.584} </math> |
- | + | (equation 38 in [[#References|[1]]]): | |
+ | :<math>1.0/C_f^{1/2} = 1.7 + 4.15 \, log_{10} (Re_x \, C_f) </math> | ||
+ | |||
+ | The following skin friction formulas are extracted from [[#References|[2]]],p.19. Proper reference needed: | ||
+ | |||
+ | Prandtl (1927): | ||
+ | :<math> C_f = 0.074 \, Re_x^{-1/5} </math> | ||
+ | |||
+ | Telfer (1927): | ||
+ | :<math> C_f = 0.34 \, Re_x^{-1/3} + 0.0012 </math> | ||
+ | |||
+ | Prandtl-Schlichting (1932): | ||
+ | :<math> C_f = 0.455 \, [ log_{10}(Re_x)]^{-2.58} </math> | ||
+ | |||
+ | Schoenherr (1932): | ||
+ | :<math> C_f = 0.0586 \, [ log_{10}(Re_x \, C_f )]^{-2} </math> | ||
+ | |||
+ | Schultz-Grunov (1940): | ||
+ | :<math> C_f = 0.427 \, [ log_{10}(Re_x) - 0.407]^{-2.64} </math> | ||
+ | |||
+ | Kempf-Karman (1951): | ||
+ | :<math> C_f = 0.055 \, Re_x^{-0.182} </math> | ||
+ | |||
+ | Lap-Troost (1952): | ||
+ | :<math> C_f = 0.0648 \, [log_{10}(Re_x \, C_f^{0.5})-0.9526]^{-2} </math> | ||
+ | |||
+ | Landweber (1953): | ||
+ | :<math> C_f = 0.0816 \, [log_{10}(Re_x) - 1.703]^{-2} </math> | ||
+ | |||
+ | Hughes (1954): | ||
+ | :<math> C_f = 0.067 \, [log_{10}(Re_x) - 2 ] ^{-2} </math> | ||
+ | |||
+ | Wieghard (1955): | ||
+ | :<math> C_f = 0.52 \, [log_{10}(Re_x)] ^{-2.685} </math> | ||
+ | |||
+ | ITTC (1957): | ||
+ | :<math> C_f = 0.075 \, [log_{10}(Re_x) - 2 ] ^{-2} </math> | ||
+ | |||
+ | Gadd (1967): | ||
+ | :<math> C_f = 0.0113 \, [log_{10}(Re_x) - 3.7 ] ^{-1.15} </math> | ||
+ | |||
+ | Granville (1977): | ||
+ | :<math> C_f = 0.0776 \, [log_{10}(Re_x) - 1.88 ] ^{-2} + 60 \, Re_x^{-1} </math> | ||
+ | |||
+ | Date Turnock (1999): | ||
+ | :<math> C_f = [4.06 \, log_{10}(Re_x \, C_f) - 0.729]^{-2} </math> | ||
+ | |||
+ | |||
+ | == References == | ||
+ | # {{reference-paper|author=von Karman, Theodore |year=1934|title=Turbulence and Skin Friction|rest=J. of the Aeronautical Sciences, Vol. 1, No 1, 1934, pp. 1-20}} | ||
+ | # {{reference-paper|author=Lazauskas, Leo Victor |year=2005|title=Hydrodynamics of Advanced High-Speed Sealift Vessels|rest=Master Thesis, University of Adelaide, Australia ([http://digital.library.adelaide.edu.au/dspace/bitstream/2440/37729/1/02whole.pdf download])}} | ||
# {{reference-book|author=Schlichting, Hermann |year=1979|title=Boundary Layer Theory|rest=ISBN 0-07-055334-3, 7th Edition}} | # {{reference-book|author=Schlichting, Hermann |year=1979|title=Boundary Layer Theory|rest=ISBN 0-07-055334-3, 7th Edition}} | ||
Line 30: | Line 80: | ||
''Someone should add more data about total skin friction approximations, Prandtl-Schlichting skin-friction formula, and the Karman-Schoenherr equation.'' | ''Someone should add more data about total skin friction approximations, Prandtl-Schlichting skin-friction formula, and the Karman-Schoenherr equation.'' | ||
+ | ''Add proper reference for equations in [2]'' | ||
{{stub}} | {{stub}} | ||
+ | |||
+ | Edit: | ||
+ | With regards to the 1/7th power law, in Schlichtings book (see references) the formula describing Cf over a flat plate , without pressure gradient, is Cf=0.0725*Re^(-1/5) and it is valid between 5x10^5<Re<10^7 with the assumption of the flow being turbulent from the leading edge (page 639) | ||
+ | This is found in page 638 , formula 21.11. | ||
+ | |||
+ | Taking into account that the flow is laminar for the first part of the plate and using Blasius's equeation, after providing corrective some corrective factors , Schlichting in page 644 states: | ||
+ | Cf=0.02666*Rl^(-0.139) | ||
+ | There should be a separation between local and total skin friction on the plate.grizos |
Latest revision as of 12:14, 14 January 2016
The skin friction coefficient, , is defined by:
Where is the local wall shear stress, is the fluid density and is the free-stream velocity (usually taken ouside of the boundary layer or at the inlet).
For a turbulent boundary layer several approximation formulas for the local skin friction for a flat plate can be used:
1/7 power law:
1/7 power law with experimental calibration (equation 21.12 in [3]):
Schlichting (equation 21.16 footnote in [3])
Schultz-Grunov (equation 21.19a in [3]):
(equation 38 in [1]):
The following skin friction formulas are extracted from [2],p.19. Proper reference needed:
Prandtl (1927):
Telfer (1927):
Prandtl-Schlichting (1932):
Schoenherr (1932):
Schultz-Grunov (1940):
Kempf-Karman (1951):
Lap-Troost (1952):
Landweber (1953):
Hughes (1954):
Wieghard (1955):
ITTC (1957):
Gadd (1967):
Granville (1977):
Date Turnock (1999):
References
- von Karman, Theodore (1934), "Turbulence and Skin Friction", J. of the Aeronautical Sciences, Vol. 1, No 1, 1934, pp. 1-20.
- Lazauskas, Leo Victor (2005), "Hydrodynamics of Advanced High-Speed Sealift Vessels", Master Thesis, University of Adelaide, Australia (download).
- Schlichting, Hermann (1979), Boundary Layer Theory, ISBN 0-07-055334-3, 7th Edition.
To do
Someone should add more data about total skin friction approximations, Prandtl-Schlichting skin-friction formula, and the Karman-Schoenherr equation. Add proper reference for equations in [2]
Edit:
With regards to the 1/7th power law, in Schlichtings book (see references) the formula describing Cf over a flat plate , without pressure gradient, is Cf=0.0725*Re^(-1/5) and it is valid between 5x10^5<Re<10^7 with the assumption of the flow being turbulent from the leading edge (page 639)
This is found in page 638 , formula 21.11.
Taking into account that the flow is laminar for the first part of the plate and using Blasius's equeation, after providing corrective some corrective factors , Schlichting in page 644 states: Cf=0.02666*Rl^(-0.139) There should be a separation between local and total skin friction on the plate.grizos