CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > Structural modeling

Structural modeling

From CFD-Wiki

(Difference between revisions)
Jump to: navigation, search
 
(8 intermediate revisions not shown)
Line 1: Line 1:
-
Those that use the physical hypothesis of scale similarity
+
1. Those that use the physical hypothesis of scale similarity (Bardina et. al., 1980)
:<math>
:<math>
-
\tau_{ij} = \widetilde{\bar{u}_i} \widetilde{\bar{u}_j} - \widetilde{\bar{u}_i \bar{u}_j}
+
\tau_{ij} = L_{ij} = \widetilde{\bar{u}_i} \widetilde{\bar{u}_j} - \widetilde{\bar{u}_i \bar{u}_j}
</math>
</math>
-
Those derived by formal series expansions
+
2. Those derived by formal series expansions (Clark et. al., 1979)
:<math>
:<math>
-
\tau_{ij} = \frac{\Delta^2}{12} \frac{\partial \bar{u}_i}{\partial x_{k}} \frac{\partial \bar{u}_j}{\partial x_{k}}  
+
\tau_{ij} = G_{ij} = \frac{\Delta^2}{12} \frac{\partial \bar{u}_i}{\partial x_{k}} \frac{\partial \bar{u}_j}{\partial x_{k}}  
</math>
</math>
 +
 +
3. Mixed models, which are based on linear combinations of the eddy-viscosity and structural types
 +
 +
:<math>
 +
\tau_{ij} = G_{ij}-2\nu_{sgs} S_{ij}
 +
</math>
 +
or
 +
:<math>
 +
\tau_{ij} = L_{ij}-2\nu_{sgs} S_{ij}
 +
</math>
 +
 +
4. Dynamic structure models, which divide the modeled SGS stress into a model for the SGS kinetic energy and a model for the structure of the SGS stress tensor (relative weights of each of the components) (Pomraning and Rutland, 2002; Lu et. al. 2007, 2008; Lu and Porte-Agel, 2010)
 +
:<math>
 +
\tau_{ij} = 2k_{sgs} \left(\frac{L_{ij}}{L_{kk}}\right) 
 +
</math>
 +
or
 +
:<math>
 +
\tau_{ij} = 2k_{sgs} \left(\frac{G_{ij}}{G_{kk}}\right)
 +
</math>
 +
The transport equation for the SGS kinetic energy can be used to close the model (Pomraning and Rutland, 2002; Lu et. al., 2008)
 +
:<math> \frac{\partial k_{sgs}}{\partial t} + \frac{\partial \overline u_{j} k_{sgs}} {\partial x_{j}} = - \tau_{ij} \frac{\partial \overline u_{i}}{\partial x_{j}}    - C_{\varepsilon} \frac{k_{sgs}^{3/2}}{\Delta} + \frac{\partial}{\partial x_{j}} \left( \nu_t \frac{\partial k_{sgs}}{\partial x_{j}}  \right)
 +
</math>
 +
or use a zero-equation procedure (Lu and Porte-Agel, 2010) to estimate the SGS kinetic energy.
 +
 +
== References ==
 +
*{{reference-paper|author=J. Bardina and J. H. Ferziger and W. C. Reynolds|year=1980|title=Improved subgrid scale models for large eddy simulation|rest=AIAA Paper No. 80-1357}}
 +
 +
*{{reference-paper|author=R. A. Clark and J. H. Ferziger and W. C. Reynolds|year=1979|title=Evaluation of subgrid-scale models using an accurately simulated turbulent flow|rest=J. Fluid Mech.}}
 +
 +
*{{reference-paper|author=E. Pomraning and C. J. Rutland|year=2002|title=Dynamic one-equation nonviscosity large-eddy simulation model|rest=AIAA J.}}
 +
 +
*{{reference-paper|author=H. Lu and C. J. Rutland and L. M. Smith|year=2007|title=A priori tests of one-equation LES modeling of rotating turbulence|rest=J. Turbul.}}
 +
 +
*{{reference-paper|author=H. Lu and C. J. Rutland and L. M. Smith|year=2008|title=A posteriori tests of one-equation LES modeling of rotating turbulence|rest=Int. J. Mod. Phys. C}}
 +
 +
*{{reference-paper|author=H. Lu and F. Porte-Agel|year=2010|title=A modulated gradient model for large-eddy simulation: application to a neutral atmospheric boundary layer|rest=Phys. Fluids}}

Latest revision as of 20:10, 27 June 2013

1. Those that use the physical hypothesis of scale similarity (Bardina et. al., 1980)


\tau_{ij} = L_{ij} = \widetilde{\bar{u}_i} \widetilde{\bar{u}_j} - \widetilde{\bar{u}_i \bar{u}_j}


2. Those derived by formal series expansions (Clark et. al., 1979)


\tau_{ij} = G_{ij} = \frac{\Delta^2}{12} \frac{\partial \bar{u}_i}{\partial x_{k}} \frac{\partial \bar{u}_j}{\partial x_{k}}

3. Mixed models, which are based on linear combinations of the eddy-viscosity and structural types


\tau_{ij} = G_{ij}-2\nu_{sgs} S_{ij}

or


\tau_{ij} = L_{ij}-2\nu_{sgs} S_{ij}

4. Dynamic structure models, which divide the modeled SGS stress into a model for the SGS kinetic energy and a model for the structure of the SGS stress tensor (relative weights of each of the components) (Pomraning and Rutland, 2002; Lu et. al. 2007, 2008; Lu and Porte-Agel, 2010)


\tau_{ij} = 2k_{sgs} \left(\frac{L_{ij}}{L_{kk}}\right)

or


\tau_{ij} = 2k_{sgs} \left(\frac{G_{ij}}{G_{kk}}\right)

The transport equation for the SGS kinetic energy can be used to close the model (Pomraning and Rutland, 2002; Lu et. al., 2008)

 \frac{\partial k_{sgs}}{\partial t} + \frac{\partial \overline u_{j} k_{sgs}} {\partial x_{j}} = - \tau_{ij} \frac{\partial \overline u_{i}}{\partial x_{j}}     - C_{\varepsilon} \frac{k_{sgs}^{3/2}}{\Delta} + \frac{\partial}{\partial x_{j}} \left( \nu_t \frac{\partial k_{sgs}}{\partial x_{j}}  \right)

or use a zero-equation procedure (Lu and Porte-Agel, 2010) to estimate the SGS kinetic energy.

References

  • J. Bardina and J. H. Ferziger and W. C. Reynolds (1980), "Improved subgrid scale models for large eddy simulation", AIAA Paper No. 80-1357.
  • R. A. Clark and J. H. Ferziger and W. C. Reynolds (1979), "Evaluation of subgrid-scale models using an accurately simulated turbulent flow", J. Fluid Mech..
  • E. Pomraning and C. J. Rutland (2002), "Dynamic one-equation nonviscosity large-eddy simulation model", AIAA J..
  • H. Lu and C. J. Rutland and L. M. Smith (2007), "A priori tests of one-equation LES modeling of rotating turbulence", J. Turbul..
  • H. Lu and C. J. Rutland and L. M. Smith (2008), "A posteriori tests of one-equation LES modeling of rotating turbulence", Int. J. Mod. Phys. C.
  • H. Lu and F. Porte-Agel (2010), "A modulated gradient model for large-eddy simulation: application to a neutral atmospheric boundary layer", Phys. Fluids.
My wiki