CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > Approximation Schemes for convective term

Approximation Schemes for convective term

From CFD-Wiki

(Difference between revisions)
Jump to: navigation, search
(MINMOD)
 
(80 intermediate revisions not shown)
Line 1: Line 1:
 +
''When we shall fill this page, I offer to make common identifications, because in different issues was used different notation.
 +
 +
''Also I beg everybody to help me with original works. Later I shall write, what is necessary. If anyone have literature connected with convective schemes, please drop me a line.''
 +
 +
''Michail''
 +
 +
== Discretisation Schemes for convective terms in General Transport Equation. Finite-Volume Formulation, structured grids  ==
== Discretisation Schemes for convective terms in General Transport Equation. Finite-Volume Formulation, structured grids  ==
Line 21: Line 28:
<table width="100%"><tr><td>
<table width="100%"><tr><td>
-
:<math>  
+
:<math> \boldsymbol{
-
J_{h}- J_{l} + J_{n}- J_{s} + J_{e}- J_{w} + D_{h} - D_{l} + D_{n} - D_{s} + D_{e} - D_{s} = S_{p}
+
J_{h}- J_{l} + J_{n}- J_{s} + J_{e}- J_{w} + D_{h} - D_{l} + D_{n} - D_{s} + D_{e} - D_{s} = S_{p}}
</math>
</math>
</td><td width="5%">(2)</td></tr></table>
</td><td width="5%">(2)</td></tr></table>
Line 33: Line 40:
<table width="100%"><tr><td>
<table width="100%"><tr><td>
:<math>  
:<math>  
-
  J_{f}=C_{f}\phi_{f}
+
\boldsymbol{  J_{f}=C_{f}\phi_{f} }
</math>
</math>
</td><td width="5%">(1)</td></tr></table>
</td><td width="5%">(1)</td></tr></table>
Line 77: Line 84:
<math>\boldsymbol{d}</math> - mean Downstream node
<math>\boldsymbol{d}</math> - mean Downstream node
-
[[Image:Stencil_2a.jpg]].
+
[[Image:NM_convectionschemes_Stencil_2a.jpg]].
== Basic Discretisation schemes ==
== Basic Discretisation schemes ==
Line 105: Line 112:
The UDS is unconditionally bounded and highly stable, but as noted earlier it is only 1st-order accurate in terms of truncation error and may produce severe numerical diffusion. The scheme is therefore highly diffusive when the flow direction is skewed relative to the grid lines.
The UDS is unconditionally bounded and highly stable, but as noted earlier it is only 1st-order accurate in terms of truncation error and may produce severe numerical diffusion. The scheme is therefore highly diffusive when the flow direction is skewed relative to the grid lines.
-
=== Hybrid Differencing Scheme (HDS) ===  
+
=== Hybrid Differencing Scheme (HDS also HYBRID) ===  
The HDS of Spalding [1972] switches the discretisation of the convection terms between CDS and UDS according to the local cell Peclet number as follows:
The HDS of Spalding [1972] switches the discretisation of the convection terms between CDS and UDS according to the local cell Peclet number as follows:
Line 111: Line 118:
<table width="100%"><tr><td>
<table width="100%"><tr><td>
:<math>  
:<math>  
-
     \phi_{f}=0.5 \left( \phi_{c} + \phi_{d} \right) for Pe \triangleleft 2  
+
     \phi_{f}=0.5 \left( \phi_{c} + \phi_{d} \right) \mbox{ for } Pe \triangleleft 2  
</math>
</math>
Line 119: Line 126:
:<math>  
:<math>  
-
\phi_{f}=  \phi_{c}         for Pe \triangleright 2
+
\phi_{f}=  \phi_{c}   \mbox{ for } Pe \triangleright 2
</math>
</math>
Line 141: Line 148:
=== Power-Law Scheme ===  
=== Power-Law Scheme ===  
-
'''S.V.Patankar''', Numerical Heat Transfer and Fluid Flow (McGraw-Hill, New York, 1980)
+
* {{reference-book|author=Patankar, S. V.|year=1980|title=Numerical Heat Transfer and Fluid Flow|rest=ISBN 0070487405, McGraw-Hill, New York}}
== High Resolution Schemes (HRS) ==
== High Resolution Schemes (HRS) ==
Line 171: Line 178:
From equation (\ref{eq9}) it can be seen that <math>\boldsymbol{B=1}</math> gives the UDS and <math>\boldsymbol{B=r}</math> gives the CDS.
From equation (\ref{eq9}) it can be seen that <math>\boldsymbol{B=1}</math> gives the UDS and <math>\boldsymbol{B=r}</math> gives the CDS.
 +
Please note that ''linear'' does not mean first order
 +
==== Linear schemes ====
-
'''N.P.Waterson and H.Deconinck''',A unified approach to the desing and application of bounded high-order covection schemes, VKI preprint 1995-21, (1995)
+
Linear schemes are those for which <math>\boldsymbol{B}</math>is linear function of <math>\boldsymbol{r}</math>
-
'''N.P.Waterson''', Development of bounded high-order convection scheme for general industrial applications, VKI Project Report 1994-33, (1994)
+
*'''<math>\boldsymbol{B(r) = 0}</math>''' is upwind differencing (first-order accurate)
 +
 
 +
*'''<math>\boldsymbol{B(r) = r}</math>''' is central differencing (second-order accurate)
 +
 +
==== Kappa Schemes and Other schemes ====
 +
 
 +
Higher order schemes are usually members of the <math>\boldsymbol{B \left( \kappa \right)}</math> class, for which
 +
 
 +
<table width="100%"><tr><td>
 +
:<math>
 +
B\left( r \right) = 0.5 \left[ \left( 1 + \kappa \right) r + \left(  1 - \kappa \right) \right]
 +
</math>
 +
</td><td width="5%">(1)</td></tr></table>
 +
 
 +
Using this equation face variable can be expressed:
 +
 
 +
in usual variabales
 +
 
 +
<table width="100%"><tr><td>
 +
:<math>
 +
f_{w}=f_{C}+ \frac{1}{4}\left[\left( 1+\kappa \right)\left(f_{D}-f_{C}\right)+\left(1-\kappa \right) \left( f_{D}-f_{U} \right)\right]
 +
</math>
 +
</td><td width="5%">(1)</td></tr></table>
 +
 
 +
in normalised variables
 +
 
 +
<table width="100%"><tr><td>
 +
:<math>
 +
\hat{f_{w}}=\hat{f_{w}}+\frac{1}{4}
 +
\left[\left( 1+\kappa \right)\left( 1-\hat{f_{C}}\right)+
 +
      \left( 1-\kappa \right)\hat{f_{C}}\right]
 +
</math>
 +
</td><td width="5%">(1)</td></tr></table>
 +
 
 +
 
 +
The main schemes are
 +
 
 +
 
 +
<blockquote style="background: white; border: 1px solid black; padding: 1em;">
 +
<table border="1">
 +
<tr><td><math>\boldsymbol{\kappa = 1}</math> </td><td>CDS (central differencing scheme)</td></tr>
 +
 
 +
<tr><td><math>\boldsymbol{\kappa = -1}</math> </td><td>QUICK (quadaratic upwind scheme)</td></tr>
 +
 
 +
<tr><td><math>\boldsymbol{\kappa = 0.5}</math></td><td>LUS (linear upwind scheme)</td></tr>
 +
 
 +
<tr><td><math>\boldsymbol{\kappa = 0 }</math></td><td>Fromm</td></tr>
 +
 
 +
<tr><td><math>\boldsymbol{\kappa = 1/3}</math></td><td>CUS (cubic upwind scheme)</td></tr>
 +
 
 +
</table>
 +
</blockquote>
 +
 
 +
==== Non-Linear schemes ====
 +
 
 +
Non-linear schemes are those for which <math>\boldsymbol{B}</math> is not a linear function of <math>\boldsymbol{r}</math>. They fall into three categories, depending on the linear schemes on which they are based.
 +
 
 +
 
 +
* <math>\boldsymbol{(a)}</math> QUICK based:
 +
 
 +
 
 +
SMART (piecewise linear, bounded)
 +
 
 +
<table width="100%"><tr><td>
 +
:<math>
 +
B\left( r \right) =  \max \left( 0, \min \left( 2r, \ 0.75r + 0.25, \ 4  \right) \right) 
 +
</math>
 +
</td><td width="5%">(1)</td></tr></table>
 +
 
 +
H-QUICK (smooth)
 +
 
 +
<table width="100%"><tr><td>
 +
:<math>
 +
B\left( r \right) =  2 \left( r + \left| r \right| \right) / \left( r + 3 \right)
 +
</math>
 +
</td><td width="5%">(1)</td></tr></table>
 +
 
 +
UMIST (piecewise linear , bounded)
 +
 
 +
<table width="100%"><tr><td>
 +
:<math>
 +
B\left( r \right) =  \max \left( 0, \ \min \left( 2r, \ 0.75r + 0.25, \ 025 r+ 0.75 , 2 \right)\right)
 +
</math>
 +
</td><td width="5%">(1)</td></tr></table>
 +
 
 +
CHARM (smooth, bounded)
 +
 
 +
<table width="100%"><tr><td>
 +
:<math>
 +
B\left( r \right) =  r \left( 3r + 1 \right)/\left( r + 1 \right)^{2} \ for \ r \triangleright 0
 +
</math>
 +
</td><td width="5%">(1)</td></tr></table>
 +
 
 +
<table width="100%"><tr><td>
 +
:<math>
 +
B\left( r \right) =  0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ for \ r \triangleleft 0
 +
</math>
 +
</td><td width="5%">(1)</td></tr></table>
 +
 
 +
* <math>\boldsymbol{(b)}</math> Fromm based:
 +
 
 +
MUSCL (piecewise linear)
 +
 
 +
<table width="100%"><tr><td>
 +
:<math>
 +
B\left( r \right) =  \max \left( 0, \min \left( 2r, 0.5r + 0.5, 2 \right) \right)
 +
</math>
 +
</td><td width="5%">(1)</td></tr></table>
 +
 
 +
van Leer (smooth)
 +
 
 +
<table width="100%"><tr><td>
 +
:<math>
 +
B\left( r \right) =  \left( r + \left| r \right|  \right) / \left( r + 1 \right)
 +
</math>
 +
</td><td width="5%">(1)</td></tr></table>
 +
 
 +
OSPRE (smooth)
 +
 
 +
<table width="100%"><tr><td>
 +
:<math>
 +
B\left( r \right) = 1.5r \left(r +1 \right) / \left( r^{2} + r + 1 \right)
 +
</math>
 +
</td><td width="5%">(1)</td></tr></table>
 +
 
 +
van Albada (smooth)
 +
 
 +
<table width="100%"><tr><td>
 +
:<math>
 +
B\left( r \right) = r \left( r + 1 \right) / \left( r^{2} + 1 \right)
 +
</math>
 +
</td><td width="5%">(1)</td></tr></table>
 +
 
 +
* <math>\boldsymbol{(c)}</math> other:
 +
 
 +
Superbee (piecewise linear)
 +
 
 +
<table width="100%"><tr><td>
 +
:<math>
 +
B\left( r \right) =  \max \left(0, \min \left( 2r , 1 \right), \min \left( r , 2 \right) \right)
 +
</math>
 +
</td><td width="5%">(1)</td></tr></table>
 +
 
 +
Minmod (piecewise linear)
 +
 
 +
<table width="100%"><tr><td>
 +
:<math>
 +
B\left( r \right) = \max \left( 0 , \min \left( r , 1 \right) \right) 
 +
</math>
 +
</td><td width="5%">(1)</td></tr></table>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
* {{reference-paper|author=Waterson, N. P and Deconinck, H|title=A unified approach to the desing and application of bounded high-order covection schemes|year=1995|rest=VKI preprint 1995-21}}
 +
 
 +
* {{reference-paper|author=Waterson, N. P.|title=Development of bounded high-order convection scheme for general industrial applications|year=1994|rest=VKI Project Report 1994-33}}
=== Numerical Implementation of HRS ===  
=== Numerical Implementation of HRS ===  
-
The HRS schemes can be introdused into equation (\ref{eq4b}) by using the deffered correction procedure of Rubin and Khosla [1982]. This procedure express the cell-face value <math>\boldsymbol{\phi_{f}}</math> by:
+
The HRS schemes can be introduced into equation (\ref{eq4b}) by using the deffered correction procedure of Rubin and Khosla [1982]. This procedure express the cell-face value <math>\boldsymbol{\phi_{f}}</math> by:
Line 200: Line 367:
<table width="100%"><tr><td>
<table width="100%"><tr><td>
:<math>  
:<math>  
 +
\begin{matrix}
\left\{ D_{h} + C_{h} \phi_{h} \left( U \right) \right\} -  
\left\{ D_{h} + C_{h} \phi_{h} \left( U \right) \right\} -  
-
\left\{ D_{l} + C_{l} \phi_{l} \left( U \right) \right\} +
+
\left\{ D_{l} + C_{l} \phi_{l} \left( U \right) \right\} & + &  \\
\left\{ D_{n} + C_{n} \phi_{n} \left( U \right) \right\} -  
\left\{ D_{n} + C_{n} \phi_{n} \left( U \right) \right\} -  
-
\left\{ D_{s} + C_{s} \phi_{s} \left( U \right) \right\} +
+
\left\{ D_{s} + C_{s} \phi_{s} \left( U \right) \right\} & + &  \\
\left\{ D_{e} + C_{e} \phi_{e} \left( U \right) \right\} -  
\left\{ D_{e} + C_{e} \phi_{e} \left( U \right) \right\} -  
-
\left\{ D_{w} + C_{w} \phi_{w} \left( U \right) \right\} = S_{p} + B_{p}
+
\left\{ D_{w} + C_{w} \phi_{w} \left( U \right) \right\} & &= S_{p} + B_{p}
 +
\end{matrix}
</math>
</math>
</td><td width="5%">(1)</td></tr></table>
</td><td width="5%">(1)</td></tr></table>
Line 227: Line 396:
    
    
<table width="100%"><tr><td>
<table width="100%"><tr><td>
-
:<math>  
+
:<math>
-
   a_{P}\phi_{P}= a_{N}\phi_{N} + a_{S}\phi_{S} + a_{E}\phi_{E} + a_{W}\phi_{W} + a_{H}\phi_{H} + a_{L}\phi_{L} + a_{T}\phi_{T} + S_{p} +  B_{p}
+
\begin{matrix}
 +
   a_{P}\phi_{P}= & & a_{N}\phi_{N} &+& a_{S}\phi_{S} &+& a_{E}\phi_{E} \\
 +
& + & a_{W}\phi_{W} &+& a_{H}\phi_{H} &+& a_{L}\phi_{L} \\
 +
& + & a_{T}\phi_{T} &+& S_{p} &+& B_{p}
 +
\end{matrix}
</math>
</math>
</td><td width="5%">(1)</td></tr></table>
</td><td width="5%">(1)</td></tr></table>
Line 240: Line 413:
-
'''S.G.Rubin and P.K.Khoshla''',Polinomial interpolation method for viscous flow calculations, J. Comp. Phys., Vol. 27, p153, (1982)
 
-
== Normalised Variables ==
+
{{reference-paper | author=P.K. Khosla and S.G. Rubin | year=1974 | title=A diagonally dominant second order accurate implicit scheme | rest=Comput. Fluids, 2  207-209 }}
-
'''B.P.Leonard''' Simple high-accuracy resolution program for convective modelling of discontinuities. International J. Numerical Methods Fluids, 8:1291-1318, 1988
+
 
 +
{{reference-paper | author=S.G.Rubin and P.K.Khoshla | year=1982 | title=Polynomial interpolation method for viscous flow calculations | rest=J. Comp. Phys., Vol. 27, pp. 153}}
 +
 
 +
== Normalised Variables Formulation (NVF) ==
 +
 
 +
 
 +
{{reference-paper | author=B.P.Leonard | year=1988 | title=Simple high-accuracy resolution program for convective modelling of discontinuities | rest=International J. Numerical Methods Fluids, 8:1291-1318}}
 +
 
 +
== Normalised Variable and Space Formulation (NVSF) ==
 +
 
 +
{{reference-paper | author=Darwish M.S. and Moukalled F. | year=1994 | title=Normalized Variable and Space Formulation Methodology for High-Resolution Schemes | rest=Num. Heat Trans., part B, vol. 26, pp.
 +
79-96}}
 +
 
 +
 
 +
 
 +
{{reference-paper | author=Alves M.A., Cruz P. Mendes A. Magahaes F.D. Pinho F.T., Oliveira P.J. | year=2002 | title=Adaptive multiresolution approach for solution of hyperbolic PDEs | rest= Computational Methods in Applied Mechanics and Engineering, 191, 3909-3928 }}
== Normalised Variables Diagram (NVD) ==
== Normalised Variables Diagram (NVD) ==
-
== Total Variation Diminishing (TVD) ==  
+
According to Leonard [1988], for any (in general nonlinear) characteristics in the normalized variable diagram (see figure below):
 +
 
 +
*'' Passing through <math>\boldsymbol{Q}</math> is necessary and sufficient for second-order accuracy''
 +
*'' Passing through <math>\boldsymbol{Q}</math> with a slope of 0.75 (for a uniform grid) is necessary and sufficient for third-order accuracy''
 +
 
 +
The horizontal and vertical coordinates of point <math>\boldsymbol{Q}</math> in the normalized variable diagram and the slope of the characteristics at the point <math>\boldsymbol{Q}</math> for preserving the third-order accuracy for a nonuniform grid can be obtained by simple algebra using eqs. [.....]
 +
 
 +
 +
<table width="100%"><tr><td>
 +
:<math>
 +
X_{Q} = \frac{C_{2}}{C_{1}+C_{2}} \sigma^{+}_{w} + \frac{1-C_{2}}{1-C_{2}+C_{3}} \sigma^{-}_{w}
 +
</math>
 +
</td><td width="5%">(1)</td></tr></table>
 +
 
 +
<table width="100%"><tr><td>
 +
:<math>
 +
Y_{Q} = \frac{C_{2} \left( 1 + C_{1} \right) }{C_{1} + C_{2}} \sigma^{+}_{w}
 +
+ \frac{ \left( 1 - C_{2} \right) \left( 1 + C_{3} \right) } { 1 - C_{2} + C_{3} } \sigma^{-}_{w}
 +
</math>
 +
</td><td width="5%">(1)</td></tr></table>
 +
 
 +
<table width="100%"><tr><td>
 +
:<math>
 +
S_{Q} =  \left( 1 + C_{1} \right)\left( 1 - C_{2}  \right)\sigma^{+}_{w} + C_{2} \left( 1 + C_{3} \right) \sigma^{-}_{w}
 +
</math>
 +
</td><td width="5%">(1)</td></tr></table>
 +
 
 +
where
 +
 
 +
<table width="100%"><tr><td>
 +
:<math>
 +
C_{1} =  \frac{\Delta X_{W}}{\Delta X_{W}+\Delta X_{WW}},
 +
C_{2} =  \frac{\Delta X_{W}}{\Delta X_{W}+\Delta X_{P}},
 +
C_{3} =  \frac{\Delta X_{P}}{\Delta X_{P}+\Delta X_{E}}
 +
</math>
 +
</td><td width="5%">(1)</td></tr></table>
 +
 
 +
For a uniform qrid, <math>\boldsymbol{X_{Q} = 0.5, Y_{Q} = 0.75}</math> and <math>\boldsymbol{S_{Q} = 0.75}</math>
 +
 
 +
 
 +
 
 +
[[Image:NM_convectionschemes_NVD_01.jpg]]
 +
 
 +
Normalised variable diagram for various well-known schemes
 +
 
 +
== Total Variation Diminishing (TVD) ==
 +
 
 +
{{reference-paper | author=A. Harten | year=1984 | title=On a class of high resolution total-variation stable finite difference schemes | rest=SIAM J. Num. Analysis, 21, p1}}
 +
 
 +
{{reference-paper | author=P. K. Sweby| year=1984 | title=High resolution schemes using flux-limiters for hyperbolic conservation laws | rest=SIAM J. Num. Analysis, 21, p995}}
 +
 
 +
== S. Godunov theorem ==
 +
 
 +
 
 +
== Total Variation Diminishing Diagram (Sweby diagram) ==
 +
 
 +
[[Image:NM_convectionschemes_TVD_D_01.jpg]]
 +
 
 +
[[Image:NM_convectionschemes_TVD_D_02.jpg]]
 +
 
 +
[[Image:NM_convectionschemes_TVD_D_03.jpg]]
== Convection Boundedness Criterion (CBC) ==
== Convection Boundedness Criterion (CBC) ==
 +
{{reference-paper | author=Choi S.K., Nam H.Y. and Cho M. | year=1995 | title=A comparison of high-order bounded convection schemes | rest=Computational Methods in Applied Mechanics and engineering, Vol. 121, pp. 281-301}}
-
'''Choi S.K.,Nam H.Y.,Cho M.''' A comparison of high-order bounded convection schemes // Computational Methods in Applied Mechanics and engineering. 1995 121. 281-301
+
{{reference-paper | author=Gaskell P.H. and Lau A.K.C. | year=1988 | title=Curvative-compensated convective transport: SMART, a new boundedness-preserving trasport algorithm | rest=International Journal for Numerical Methods in Fluids, Vol. 8, No. 6, pp. 617-641}}
-
'''Gaskell P.H., Lau A.K.C.''' Curvative-compensated convective transport: SMART, a new boundedness-preserving trasport algorithm // Internatioan Journal for Numerical Methods in Fluids. 1988. 8, N 6. 617-641
+
---------------------------------------------------
 +
 
 +
Gaskel and Lau have formulated the CBC as follows. A numerical approximation to <math>\hat{\phi_{w}}</math> is bounded if:
 +
 
 +
*'' for <math> 0 \leq \hat{\phi_{W}} \leq 1 </math>, <math> \hat{\phi} </math> is bounded below by the function <math>\hat{\phi_{w}} = \hat{\phi_{W}}</math> and above by unity and passes through the points (0,0) and (1,1)''
 +
 
 +
*'' for <math> \hat{\phi_{W}} \triangleleft  0</math> or <math> \hat{\phi_{W}} \triangleright 1 </math> , <math> \hat{\phi} </math> is equal to <math> \hat{\phi_{W}}</math> ''
 +
 
 +
The CBC is clearly illustrated in figure below, where the line <math>\hat{\phi_{w}} = \hat{\phi_{W}}</math>  and the shaded area are the region over which the CBC is valid. The importance of the CBC is to provide a sufficient and necessary condition for guaranteeing the bounded solution if at most three neighbouring nodal values are used to approximate face values. It is well known that the positivity of finite-difference coefficients is also a sufficient condition for boundedness, but this is overly stringent, for the existense of negative coefficients does not neccesarily lead to over- or undershoots.
 +
 
 +
[[Image:CBC_01.jpg]]
== Schemes ==  
== Schemes ==  
-
=== QUICK - Quadratic Upwind Interpolation for Convective Kinematics ===
+
=== Linear ===
 +
 
 +
==== SOU - Second Order Upwind (also LUDS or UDS-2) ====
 +
 
 +
{{reference-paper | author=S.P.Vanka | title=Second-order upwind differencing ina recirculating flow | rest=AIAA J., 25, 1435-1441}}
 +
 
 +
R.F.Warming and R.M. Beam
 +
 
 +
Upwind second order difference schemes and applications in aerodynamics flows
 +
 
 +
AIAA J. 14 (1976) 1241-1249
 +
 
 +
==== Skew - Upwind ====
 +
 
 +
'''G.D.Raithby ''', Skew upstream differencing schemes for problems involving fluid flow, Computational Methods Applied Mech. Engineering, 9, 153-164 (1976)
 +
 
 +
==== QUICK - Quadratic Upwind Interpolation for Convective Kinematics (also UDS-3) ====
'''B.P.Leonard''', A stable and accurate modelling procedure based on quadratic interpolation, Comput. Methods Appl. Mech. Engrg. 19 (1979) 58-98
'''B.P.Leonard''', A stable and accurate modelling procedure based on quadratic interpolation, Comput. Methods Appl. Mech. Engrg. 19 (1979) 58-98
-
=== LUS - Linear Upwind Scheme ===
+
==== LUS - Linear Upwind Scheme ====
'''H.C.Price, R.S. Varga and J.E.Warren''' , Application of oscillation matrices to diffusion-convection equations, Journal Math. and Phys., Vol. 45, p.301, (1966)
'''H.C.Price, R.S. Varga and J.E.Warren''' , Application of oscillation matrices to diffusion-convection equations, Journal Math. and Phys., Vol. 45, p.301, (1966)
-
=== Fromm - Fromm's Upwind Scheme ===
+
==== Fromm - Fromm's Upwind Scheme ====
-
=== CUS - Cubic Upwind Difference Scheme ===
+
==== CUDS - Cubic Upwind Difference Scheme (also CUS)  ====
-
=== van Leer limiter ===
+
=== Non-Linear QUICK based ===
 +
 
 +
==== SMART - Sharp and Monotonic Algorithm for Realistic Transport ====
 +
 
 +
'''P.H.Gaskell and A.C.K. Lau''', Curvature-compensated convective transport: SMART, a new boundedness preserving transport algorithm, International J. Numer. Methods Fluids 8 (1988) 617-641
 +
 
 +
==== SMARTER - SMART Efficiently Revised ====
 +
 
 +
J.K. Shin and Y.D. Choi
 +
 
 +
Study on the improvement of the convective differencing scheme for the high-accuracy and stable resolution of the numerical solution
 +
 
 +
Trans. KSME 16(6) (1992) 1179-1194 (in Korean)
 +
 
 +
==== WACEB ====
 +
 
 +
Song B., Liu G.B., Kam K.Y., Amano R.S.
 +
 
 +
On a higher-order bounded discretization schemes
 +
 
 +
International Journal for Numerical Methods in Fluids, 2000, 32, 881-897
 +
 
 +
==== VONOS - Variable-Order Non-Oscillatory Scheme ====
 +
 
 +
'''Varonos A., Bergeles G.''', Development and assessment of a Variable-Order Non-oscillatory Scheme for convection term discretization // International Journal for Numerical Methods in Fluids. 1998. 26, N 1. 1-16
 +
 
 +
==== CHARM - Cubic / Parabolic High-Accuracy Resolution Method ====
 +
 
 +
'''G.Zhou''' , Numerical simulations of physical discontinuities in single and multi-fluid flows for arbitrary Mach numbers, PhD Thesis, Chalmers University of Technology, Sweden (1995)
 +
 
 +
Gang Zhou, Lars Davidson and Erik Olsson
 +
 
 +
Transonic Inviscid / Turbulent Airfoil Flow Simulations Using a Pressure Based Method with High Order Schemes
 +
 
 +
Lecture notes in Physics, No. 453, pp. 372-377, Springler-Verlag, Berlin, (1995)
 +
 
 +
==== UMIST - Upstream Monotonic Interpolation for Scalar Transport ====
 +
 
 +
'''F.S.Lien and M.A.Leschziner''' , Upstream Monotonic Interpolation for Scalar Transport with application to complex turbulent flows, International Journal for Numerical Methods in Fluids, Vol. 19, p.257, (1994)
 +
 
 +
=== Fromm based ===
 +
 
 +
==== MUSCL - Monotonic Upwind Scheme for Conservation Laws ====
 +
 
 +
'''Lien F.S. and Leschziner M.A.''' , Proc. 5th Int. IAHR Symp. on Refind Flow Modelling and Turbulence Measurements, Paris, Sept. 1993
 +
 
 +
==== van Leer limiter ====
 +
 
 +
==== van Albada ====
 +
 
 +
==== OSPRE ====
 +
 
 +
 
 +
 
 +
=== ULTIMATE Universal Limiter ===
=== Chakravarthy-Osher limiter ===
=== Chakravarthy-Osher limiter ===
=== Sweby \Phi - limiter ===
=== Sweby \Phi - limiter ===
-
 
-
=== OSPRE ===
 
=== Superbee ===
=== Superbee ===
-
=== MINMOD ===
+
=== MINMOD - MINimum MODulus ===
'''Harten A.''' High resolution schemes using flux limiters for hyperbolic conservation laws. Journal of Computational Physics 1983; 49: 357-393
'''Harten A.''' High resolution schemes using flux limiters for hyperbolic conservation laws. Journal of Computational Physics 1983; 49: 357-393
 +
 +
A. Harten
 +
 +
High Resolution Schemes for Hyperbolic Conservation Laws
 +
 +
J. Comp. Phys., vol. 49, no. 3, pp. 225-232, 1991
=== ISNAS - Interpolation Scheme which is Nonoscillatory for Advected Scalars ===
=== ISNAS - Interpolation Scheme which is Nonoscillatory for Advected Scalars ===
Line 292: Line 624:
'''M. Zijlema''' , On the construction of a third-order accurate monotone convection scheme with application to turbulent flows in general domains. International Journal for numerical methods in fluids, 22:619-641, 1996.
'''M. Zijlema''' , On the construction of a third-order accurate monotone convection scheme with application to turbulent flows in general domains. International Journal for numerical methods in fluids, 22:619-641, 1996.
-
=== MUSCL - Monotonic Upwind Scheme for Conservation Laws ===
 
-
'''Lien F.S. and Leschziner M.A.''' , Proc. 5th Int. IAHR Symp. on Refind Flow Modelling and Turbulence Measurements, Paris, Sept. 1993
 
-
 
-
=== UMIST - Upstream Monotonic Interpolation for Scalar Transport ===
 
-
 
-
'''F.S.Lien and M.A.Leschziner''' , Upstream Monotonic Interpolation for Scalar Transport with application to complex turbulent flows, International Journal for Numerical Methods in Fluids, Vol. 19, p.257, (1994)
 
=== SOUCUP - Second-Order Upwind Central differnce-first order UPwind  ===
=== SOUCUP - Second-Order Upwind Central differnce-first order UPwind  ===
 +
{{reference-paper | author=Zhu J. | year=1992 | title=On the higher-order bounded discretization schemes for finite volume computations of incompressible flows| rest=Computational Methods in Applied Mechanics and Engineering. 98. 345-360}}
-
'''Zhu J.''' On the higher-order bounded discretization schemes for finite volume compuyations of incompressible flows // Computational Methods in Applied Mechanics and Engineering. 1992. 98. 345-360
+
{{reference-paper | author=J. Zhu, W.Rodi | year=1991 | title=A low dispersion and bounded convection scheme | rest= Comp. Meth. Appl. Mech.&Engng, Vol. 92, p 225 }}
 +
 
 +
=== COPLA - COmbination of Piecewise Linear Approximation ===
=== HLPA - Hybrid Linear / Parabolic Approximation ===
=== HLPA - Hybrid Linear / Parabolic Approximation ===
Line 311: Line 640:
'''Zhu J., Rodi W.''' A low dispersion and bounded discretization schemes  for finite volume computations of incompressible flows // Computational Methods for Applied Mechanics and Engineering. 1991. 92. 87-96
'''Zhu J., Rodi W.''' A low dispersion and bounded discretization schemes  for finite volume computations of incompressible flows // Computational Methods for Applied Mechanics and Engineering. 1991. 92. 87-96
-
=== CLAM - Curved-Line Advection Method ===
 
-
'''Van Leer B.''' , Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. Journal of Computational Physics 1974; 14:361-370
+
-----------------------------------------------------------------
-
=== SMART - Sharp and Monotonic Algorithm for Realistic Transport ===
 
-
'''P.H.Gaskell and A.C.K. Lau''', Curvature-compensated convective transport: SMART, a new boundedness preserving transport algorithm, International J. Numer. Methods Fluids 8 (1988) 617-641
+
In this scheme, the normalized face value is approximated by a combination of linear and parabolic charachteristics passing through the points, O, Q, and P in the NVD. It satisfies TVD condition and is second-order accurate
-
=== SMARTER - SMART Efficiently Revised ===
+
Usual variables
-
=== SHARP - Simple High Accuracy Resolution Program ===
+
<table width="100%"><tr><td>
 +
:<math>
 +
f_{w}=  
 +
\begin{cases}
 +
f_{w} + \left( f_{P} - f_{W} \right) \hat{f_{C}} & 0 \leq \hat{f_{C}} \leq 1 \\
 +
f_{W} & \hat{f_{C}} \triangleleft 0 \ , \ \hat{f_{C}} \triangleright 1
 +
\end{cases}
 +
</math>
 +
</td><td width="5%">(2)</td></tr></table>
-
'''B.P.Leonard''', Simple high-accuracy resolution rogram for convective modelling of discontinuities, International J. Numerical Methods Fluids 8 (1988) 1291-1381
+
Normalized variables - uniform grids
-
=== LPPA - Linear and Piecewise / Parabolic Approximasion ===
+
<table width="100%"><tr><td>
 +
:<math>
 +
\hat{f_{w}}=
 +
\begin{cases}
 +
\hat{f_{C}} \left( 2 - \hat{f_{C}} \right) \hat{f_{C}} & 0 \leq \hat{f_{C}} \leq 1 \\
 +
\hat{f_{C}} & \hat{f_{C}} \triangleleft 0 \ , \ \hat{f_{C}} \triangleright 1
 +
\end{cases}
 +
</math>
 +
</td><td width="5%">(2)</td></tr></table>
 +
 
 +
Normalized variables - non-uniform grids
-
=== CHARM - Cubic / Parabolic High-Accuracy Resolution Method ===
+
<table width="100%"><tr><td>
 +
:<math>
 +
\hat{f_{w}}=  
 +
\begin{cases}
 +
a_{w} + b_{w} \hat{f_{C}} + c_{w} \hat{f_{C}}^{2} & 0 \leq \hat{f_{C}} \leq 1 \\
 +
\hat{f_{C}} & \hat{f_{C}} \triangleleft 0 \ , \ \hat{f_{C}} \triangleright 1
 +
\end{cases}
 +
</math>
 +
</td><td width="5%">(2)</td></tr></table>
-
'''G.Zhou''' , Numerical simulations of physical discontinuities in single and multi-fluid flows for arbitrary Mach numbers, PhD Thesis, Chalmers University of Technology, Sweden (1995)
+
where
-
=== VONOS - Variable-Order Non-Oscillatory Scheme ===
+
<table width="100%"><tr><td>
 +
:<math>
 +
a_{w} = 0  , 
-
'''Varonos A., Bergeles G.''', Development and assessment of a Variable-Order Non-oscillatory Scheme for convection term discretization // International Journal for Numerical Methods in Fluids. 1998. 26, N 1. 1-16
+
b_{w} = \left(y_{Q}- x^{2}_{Q} \right) /  \left(x_{Q}- x^{2}_{Q} \right)  ,
 +
 
 +
 
 +
c_{w} = \left(y_{Q}- x_{Q} \right) /  \left(x_{Q}- x^{2}_{Q} \right)  ,
 +
 
 +
</math>
 +
</td><td width="5%">(2)</td></tr></table>
 +
 
 +
--------------------------------------------------------
 +
Implementation
 +
 
 +
Using the switch factors:
 +
 
 +
for <math>\boldsymbol{U_w \geq 0}</math>
 +
 
 +
<table width="100%"><tr><td>
 +
:<math>
 +
\alpha^{+}_{w} = 
 +
\begin{cases}
 +
1 & \ if \ | \phi_{P} - 2 \phi_{W} + \phi_{WW}| \triangleleft | \phi_{P} - \phi_{WW} | \\
 +
0 & otherwise
 +
\end{cases}
 +
</math>
 +
</td><td width="5%">(2)</td></tr></table>
 +
 
 +
for <math>\boldsymbol{U_w \triangleleft  0}</math>
 +
 
 +
<table width="100%"><tr><td>
 +
:<math>
 +
\alpha^{-}_{w} = 
 +
\begin{cases}
 +
1 & \ if \ | \phi_{W} - 2 \phi_{P} + \phi_{E}| \triangleleft | \phi_{W} - \phi_{E} | \\
 +
0 & otherwise
 +
\end{cases}
 +
</math>
 +
</td><td width="5%">(2)</td></tr></table>
 +
 
 +
and taken all the possible flow directions into account, the un-normalized form of equation can be  written as
 +
 
 +
<table width="100%"><tr><td>
 +
:<math>
 +
\phi_{w} = U^{+}_{w} \phi_{W} + U^{-}_{w} \phi_{P} + \Delta \phi_{w}
 +
</math>
 +
</td><td width="5%">(2)</td></tr></table>
 +
 
 +
where
 +
 
 +
<table width="100%"><tr><td>
 +
:<math>
 +
\Delta \phi_{w} = U^{+}_{w} \alpha^{+}_{w} \left( \phi_{P} - \phi_{W} \right) \frac{\phi_{W} - \phi_{WW}}{\phi_{P} - \phi_{WW}} + U^{-}_{w} \alpha^{-}_{w} \left( \phi_{W} - \phi_{P} \right) \frac{\phi_{P} - \phi_{E}}{\phi_{W} - \phi_{E}} 
 +
</math>
 +
</td><td width="5%">(2)</td></tr></table>
 +
 
 +
<table width="100%"><tr><td>
 +
:<math>
 +
U^{+}_{w} = 0.5 \left( 1 + \left| U_{w} \right| / U_{w} \right) \ , \ U^{-}_{w} = 1 - U^{+}_{w} \ \ \left( U_{w}\neq 0 \right)
 +
</math>
 +
</td><td width="5%">(2)</td></tr></table>
 +
 
 +
=== CLAM - Curved-Line Advection Method ===
 +
 
 +
'''Van Leer B.''' , Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. Journal of Computational Physics 1974; 14:361-370
 +
 
 +
 
 +
=== SHARP - Simple High Accuracy Resolution Program ===
 +
 
 +
'''B.P.Leonard''', Simple high-accuracy resolution rogram for convective modelling of discontinuities, International J. Numerical Methods Fluids 8 (1988) 1291-1381
 +
 
 +
=== LPPA - Linear and Piecewise / Parabolic Approximasion ===
 +
 
 +
=== GAMMA ===
=== CUBISTA - Convergent and Universally Bounded Interpolation Scheme for the Treatment of Advection ===  
=== CUBISTA - Convergent and Universally Bounded Interpolation Scheme for the Treatment of Advection ===  
Line 340: Line 765:
== Summary of Discretizations Schemes ==
== Summary of Discretizations Schemes ==
 +
 +
=== Discretizations Schemes Estimation of order ===
 +
 +
=== Selection advice ===
== Comparison of Discretizations Schemes ==
== Comparison of Discretizations Schemes ==
Line 346: Line 775:
=== Pure convection of a scalar step by a rotating velocity field (Smith-Hutton test) ===
=== Pure convection of a scalar step by a rotating velocity field (Smith-Hutton test) ===
 +
 +
{{reference-paper | author=R.M.Smith and A.G.Hutton | year=1982 | title=The numerical treatment of advection: A performance comparison of current methods | rest=Numerical Heat Transfer, Vol. 5, p439 }}
 +
 +
 +
=== Square Lid-driven cavity flow ===
== Example code for solving Smith-Hutton test ==
== Example code for solving Smith-Hutton test ==

Latest revision as of 06:47, 16 September 2005

When we shall fill this page, I offer to make common identifications, because in different issues was used different notation.

Also I beg everybody to help me with original works. Later I shall write, what is necessary. If anyone have literature connected with convective schemes, please drop me a line.

Michail


Contents

Discretisation Schemes for convective terms in General Transport Equation. Finite-Volume Formulation, structured grids

Introduction

Here is described the discretization schemes of the convective terms in the finite-volume equations. The accuracy, numerical stability and the boundness of the solution depends on the numerical scheme used for these terms. The central issue is the specification of an appropriate relationship between the convected variable, stored at the cell centre and its value at each of the cell faces.

Basic Equations of CFD

All the conservation equations can be written in the same generic differential form:

 
  \frac {\partial( \rho \phi )} {\partial t} +  \frac{\partial}{\partial x_{i}} \left( \rho U \phi - \Gamma_{\phi} \frac{\partial\phi}{\partial x_{i}}\right)=S_{\phi}
(1)

Stencil 3a.jpg

Equation (1) is integrated over a control volume and the following discretised equation for \boldsymbol{\phi} is produced:

 \boldsymbol{
J_{h}- J_{l} + J_{n}- J_{s} + J_{e}- J_{w} + D_{h} - D_{l} + D_{n} - D_{s} + D_{e} - D_{s} = S_{p}}
(2)

where \boldsymbol{S_{p}} is the source term for the control volume \boldsymbol{P}, and \boldsymbol{J_{f}} and \boldsymbol{D_{f}} represent, respectively, the convective and diffusive fluxes of \boldsymbol{\phi} across the control-volume face \boldsymbol{f} \boldsymbol{(f=h,l,n,s,e,w)}

The convective fluxes through the cell faces are calculated as:

 
\boldsymbol{  J_{f}=C_{f}\phi_{f} }
(1)

where C_{f} is the mass flow rate across the cell face f. The convected variable \phi_{f} associated with this mass flow rate is usually stored at the cell centres, and thus some form of interpolation assumption must be made in order to determine its value at each cell face. The interpolation procedure employed for this operation is the subject of the various schemes proposed in the literature and the accuracy, stability and boundedness of the solution depends on the procedure used.

In general, the value of \boldsymbol{\phi_{f}} can be explicity formulated in terms of its neighbouring nodal values by a functional relationship of the form:

 
   \phi_{f}=P  \left( \phi_{nb} \right)
(1)

where \boldsymbol{\phi_{nb}} denotes the neighbouring-node \boldsymbol{\phi}values. Combining equations (\ref{eq3}) through (\ref{eq4a}), the discretised equation becomes:

 
   \left\{ D_{h} + C_{h} \left[ P \left( \phi_{nb} \right) \right]_{h} \right\} - 
         \left\{ D_{l} + C_{l} \left[ P \left( \phi_{nb} \right) \right]_{l} \right\} +   

         \left\{ D_{n} + C_{n} \left[ P \left( \phi_{nb} \right) \right]_{n} \right\} - 
         \left\{ D_{s} + C_{s} \left[ P \left( \phi_{nb} \right) \right]_{s} \right\} +  

         \left\{ D_{e} + C_{e} \left[ P \left( \phi_{nb} \right) \right]_{e} \right\} - 
         \left\{ D_{w} + C_{w} \left[ P \left( \phi_{nb} \right) \right]_{w} \right\} = S_{p}
(1)

Convection Schemes

All the convection schemes involve a stencil of cells in which the values of \boldsymbol{\phi} will be used to construct the face value \boldsymbol{\phi_{f}}

Picture 01.jpg

Where flow is from left to right, and \boldsymbol{f} is the face in question.

\boldsymbol{u} - mean Upstream node

\boldsymbol{c} - mean Central node

\boldsymbol{d} - mean Downstream node

NM convectionschemes Stencil 2a.jpg.

Basic Discretisation schemes

Central Differencing Scheme (CDS)

The most natural assumption for the cell-face value of the convected variable \boldsymbol{\phi_{f}} would appear to be the CDS, which calculates the cell-face value from:

 
   \phi_{f}=0.5 \left( \phi_{c} + \phi_{d} \right)
(1)

This scheme is 2nd-order accurate, but is unbounded so that unphysical oscillations appear in regions of strong convection and also in the presence of discontinuities such as shocks. The CDS may be used directly in very low Reynolds-number flows where diffusive effects dominate over convection.

Upwind Differencing Scheme (UDS)

The UDS assumes that the convected variable at the cell fase \boldsymbol{f} is the same as the upwind cell-centre value:

 
   \boldsymbol{\phi_{f}=  \phi_{c} }
(1)

The UDS is unconditionally bounded and highly stable, but as noted earlier it is only 1st-order accurate in terms of truncation error and may produce severe numerical diffusion. The scheme is therefore highly diffusive when the flow direction is skewed relative to the grid lines.

Hybrid Differencing Scheme (HDS also HYBRID)

The HDS of Spalding [1972] switches the discretisation of the convection terms between CDS and UDS according to the local cell Peclet number as follows:

 
    \phi_{f}=0.5 \left( \phi_{c} + \phi_{d} \right) \mbox{ for } Pe \triangleleft 2
(1)
 

\phi_{f}=  \phi_{c}   \mbox{ for } Pe \triangleright 2
(1)

The cell Peclet number is defined as:

 
   Pe= \rho \left| U_{f} \right| A_{f}/D_{f}
(1)


in which \boldsymbol{A_{f}} and \boldsymbol{D_{f}} are respectively, the cell-face area and physical diffusion coefficient. When \boldsymbol{Pe\triangleright 2} ,CDS calculations tends to become unstable so that theHDS reverts to the UDS. Physical diffusion is ignored when \boldsymbol{Pe\triangleright 2}.


The HDS scheme is marginally more accurate than the UDS, because the 2nd-order CDS will be used in regions of low Peclet number.

Power-Law Scheme

  • Patankar, S. V. (1980), Numerical Heat Transfer and Fluid Flow, ISBN 0070487405, McGraw-Hill, New York.

High Resolution Schemes (HRS)

Classification of High Resolution Schemes

HRS can be classified as linear or non-linear, where linear means their coefficients are not direct functions of the convected variable when applied to a linear convection equation. It is important to recognise that linear convection schemes of 2nd-order accuracy or higher may suffer from unboudedness, and are not unconditionally stable.

Non-linear schemes analyse the solution within the stencil and adapt the discretisation to avoid any unwanted behavior, such as unboundedness (see Waterson [1994]). These two types of schemes may be presented in a unified way by use of the Flux-Limiter formulation (Waterson and Deconinck [1995]), which calculates the cell-face value of the convected variable from:

 
    \phi_{f}= \phi_{c} + 0.5 B \left( r \right) \left( \phi_{c}-\phi_{u} \right)
(1)


where \boldsymbol{B \left( r \right)} is termed a limiter function and the gradient ration \boldsymbol{r} is defined as:


 
    r= \left( \phi_{d} - \phi_{c}  \right) / \left( \phi_{c} - \phi_{u}  \right)
(1)

The generalisation of this approach to handle non-uniform meshes has been given by Waterson [1994]

From equation (\ref{eq9}) it can be seen that \boldsymbol{B=1} gives the UDS and \boldsymbol{B=r} gives the CDS.

Please note that linear does not mean first order

Linear schemes

Linear schemes are those for which \boldsymbol{B}is linear function of \boldsymbol{r}

  • \boldsymbol{B(r) = 0} is upwind differencing (first-order accurate)
  • \boldsymbol{B(r) = r} is central differencing (second-order accurate)

Kappa Schemes and Other schemes

Higher order schemes are usually members of the \boldsymbol{B \left( \kappa \right)} class, for which

 
B\left( r \right) = 0.5 \left[ \left( 1 + \kappa \right) r + \left(  1 - \kappa \right) \right]
(1)

Using this equation face variable can be expressed:

in usual variabales

 
f_{w}=f_{C}+ \frac{1}{4}\left[\left( 1+\kappa \right)\left(f_{D}-f_{C}\right)+\left(1-\kappa \right) \left( f_{D}-f_{U} \right)\right]
(1)

in normalised variables

 
\hat{f_{w}}=\hat{f_{w}}+\frac{1}{4}
\left[\left( 1+\kappa \right)\left( 1-\hat{f_{C}}\right)+
       \left( 1-\kappa \right)\hat{f_{C}}\right]
(1)


The main schemes are


\boldsymbol{\kappa = 1} CDS (central differencing scheme)
\boldsymbol{\kappa = -1} QUICK (quadaratic upwind scheme)
\boldsymbol{\kappa = 0.5}LUS (linear upwind scheme)
\boldsymbol{\kappa = 0 }Fromm
\boldsymbol{\kappa = 1/3}CUS (cubic upwind scheme)

Non-Linear schemes

Non-linear schemes are those for which \boldsymbol{B} is not a linear function of \boldsymbol{r}. They fall into three categories, depending on the linear schemes on which they are based.


  • \boldsymbol{(a)} QUICK based:


SMART (piecewise linear, bounded)

 
B\left( r \right) =  \max \left( 0, \min \left( 2r, \ 0.75r + 0.25, \ 4  \right) \right)
(1)

H-QUICK (smooth)

 
B\left( r \right) =   2 \left( r + \left| r \right| \right) / \left( r + 3 \right)
(1)

UMIST (piecewise linear , bounded)

 
B\left( r \right) =  \max \left( 0, \ \min \left( 2r, \ 0.75r + 0.25, \ 025 r+ 0.75 , 2 \right)\right)
(1)

CHARM (smooth, bounded)

 
B\left( r \right) =  r \left( 3r + 1 \right)/\left( r + 1 \right)^{2} \ for \ r \triangleright 0
(1)
 
B\left( r \right) =  0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ for \ r \triangleleft 0
(1)
  • \boldsymbol{(b)} Fromm based:

MUSCL (piecewise linear)

 
B\left( r \right) =  \max \left( 0, \min \left( 2r, 0.5r + 0.5, 2 \right) \right)
(1)

van Leer (smooth)

 
B\left( r \right) =  \left( r + \left| r \right|  \right) / \left( r + 1 \right)
(1)

OSPRE (smooth)

 
B\left( r \right) = 1.5r \left(r +1 \right) / \left( r^{2} + r + 1 \right)
(1)

van Albada (smooth)

 
B\left( r \right) = r \left( r + 1 \right) / \left( r^{2} + 1 \right)
(1)
  • \boldsymbol{(c)} other:

Superbee (piecewise linear)

 
B\left( r \right) =  \max \left(0, \min \left( 2r , 1 \right), \min \left( r , 2 \right) \right)
(1)

Minmod (piecewise linear)

 
B\left( r \right) = \max \left( 0 , \min \left( r , 1 \right) \right)
(1)




  • Waterson, N. P and Deconinck, H (1995), "A unified approach to the desing and application of bounded high-order covection schemes", VKI preprint 1995-21.
  • Waterson, N. P. (1994), "Development of bounded high-order convection scheme for general industrial applications", VKI Project Report 1994-33.

Numerical Implementation of HRS

The HRS schemes can be introduced into equation (\ref{eq4b}) by using the deffered correction procedure of Rubin and Khosla [1982]. This procedure express the cell-face value \boldsymbol{\phi_{f}} by:


 
    \phi_{f}=\phi_{f}\left(U \right) + \phi^{'}_{f}
(1)

where \boldsymbol{\phi^{'}_{f}} is a higher-order correction which represents the difference between the UDS face value \boldsymbol{\phi_{f}\left(U \right)} and the higher-order scheme value \boldsymbol{\phi_{f}\left(H \right)} , i.e.

 
    \phi^{'}_{f}= \phi_{f}\left(H \right) +  \phi_{f}\left(U \right)
(1)

If equation (\ref{eq10a}) is substituted into equation (\ref{eq4b}), the resulting discretised equation is:

 
\begin{matrix}
\left\{ D_{h} + C_{h} \phi_{h} \left( U \right) \right\} - 
\left\{ D_{l} + C_{l} \phi_{l} \left( U \right) \right\} & + &   \\

\left\{ D_{n} + C_{n} \phi_{n} \left( U \right) \right\} - 
\left\{ D_{s} + C_{s} \phi_{s} \left( U \right) \right\} & + &  \\

\left\{ D_{e} + C_{e} \phi_{e} \left( U \right) \right\} - 
\left\{ D_{w} + C_{w} \phi_{w} \left( U \right) \right\} & &=  S_{p} + B_{p}
\end{matrix}
(1)


where \boldsymbol{B_{p}} is the deferred-correction source terms, given by:

 
   B_{p} = C_{l}\phi^{'}_{l} - C_{h}\phi^{'}_{h} + 
   				 C_{s}\phi^{'}_{s} - C_{n}\phi^{'}_{n} + 
   				 C_{w}\phi^{'}_{w} - C_{e}\phi^{'}_{e}
(1)

This treatment leads to a diagonally dominant coefficient matrix since it is formed using the UDS.

The final form of the discretised equation:


\begin{matrix}
  a_{P}\phi_{P}= & & a_{N}\phi_{N} &+& a_{S}\phi_{S} &+& a_{E}\phi_{E} \\
& + & a_{W}\phi_{W} &+& a_{H}\phi_{H} &+& a_{L}\phi_{L} \\
& + & a_{T}\phi_{T} &+& S_{p} &+&  B_{p}
\end{matrix}
(1)


Subscrit \boldsymbol{P} represents the current computational cell; \boldsymbol{N, S, E, W, H, L} represent the six neighbouring cells and \boldsymbol{T} represents the previous timestep (transistent cases only)

The coefficients contain the appropriate contributions from the transient, convective and diffusive terms in (\ref{eq1})



P.K. Khosla and S.G. Rubin (1974), "A diagonally dominant second order accurate implicit scheme", Comput. Fluids, 2 207-209.


S.G.Rubin and P.K.Khoshla (1982), "Polynomial interpolation method for viscous flow calculations", J. Comp. Phys., Vol. 27, pp. 153.

Normalised Variables Formulation (NVF)

B.P.Leonard (1988), "Simple high-accuracy resolution program for convective modelling of discontinuities", International J. Numerical Methods Fluids, 8:1291-1318.

Normalised Variable and Space Formulation (NVSF)

Darwish M.S. and Moukalled F. (1994), "Normalized Variable and Space Formulation Methodology for High-Resolution Schemes", Num. Heat Trans., part B, vol. 26, pp. 79-96.


Alves M.A., Cruz P. Mendes A. Magahaes F.D. Pinho F.T., Oliveira P.J. (2002), "Adaptive multiresolution approach for solution of hyperbolic PDEs", Computational Methods in Applied Mechanics and Engineering, 191, 3909-3928.

Normalised Variables Diagram (NVD)

According to Leonard [1988], for any (in general nonlinear) characteristics in the normalized variable diagram (see figure below):

  • Passing through \boldsymbol{Q} is necessary and sufficient for second-order accuracy
  • Passing through \boldsymbol{Q} with a slope of 0.75 (for a uniform grid) is necessary and sufficient for third-order accuracy

The horizontal and vertical coordinates of point \boldsymbol{Q} in the normalized variable diagram and the slope of the characteristics at the point \boldsymbol{Q} for preserving the third-order accuracy for a nonuniform grid can be obtained by simple algebra using eqs. [.....]


 
X_{Q} = \frac{C_{2}}{C_{1}+C_{2}}	\sigma^{+}_{w} + \frac{1-C_{2}}{1-C_{2}+C_{3}} \sigma^{-}_{w}
(1)
 
Y_{Q} = \frac{C_{2} \left( 1 + C_{1} \right) }{C_{1} + C_{2}}	\sigma^{+}_{w} 
+ \frac{ \left( 1 - C_{2} \right) \left( 1 + C_{3} \right) } { 1 - C_{2} + C_{3} } \sigma^{-}_{w}
(1)
 
S_{Q} =  \left( 1 + C_{1} \right)\left( 1 - C_{2}  \right)\sigma^{+}_{w} + C_{2} \left( 1 + C_{3} \right) \sigma^{-}_{w}
(1)

where

 
C_{1} =  \frac{\Delta X_{W}}{\Delta X_{W}+\Delta X_{WW}}, 
C_{2} =  \frac{\Delta X_{W}}{\Delta X_{W}+\Delta X_{P}}, 
C_{3} =  \frac{\Delta X_{P}}{\Delta X_{P}+\Delta X_{E}}
(1)

For a uniform qrid, \boldsymbol{X_{Q} = 0.5, Y_{Q} = 0.75} and \boldsymbol{S_{Q} = 0.75}


NM convectionschemes NVD 01.jpg

Normalised variable diagram for various well-known schemes

Total Variation Diminishing (TVD)

A. Harten (1984), "On a class of high resolution total-variation stable finite difference schemes", SIAM J. Num. Analysis, 21, p1.

P. K. Sweby (1984), "High resolution schemes using flux-limiters for hyperbolic conservation laws", SIAM J. Num. Analysis, 21, p995.

S. Godunov theorem

Total Variation Diminishing Diagram (Sweby diagram)

NM convectionschemes TVD D 01.jpg

NM convectionschemes TVD D 02.jpg

NM convectionschemes TVD D 03.jpg

Convection Boundedness Criterion (CBC)

Choi S.K., Nam H.Y. and Cho M. (1995), "A comparison of high-order bounded convection schemes", Computational Methods in Applied Mechanics and engineering, Vol. 121, pp. 281-301.

Gaskell P.H. and Lau A.K.C. (1988), "Curvative-compensated convective transport: SMART, a new boundedness-preserving trasport algorithm", International Journal for Numerical Methods in Fluids, Vol. 8, No. 6, pp. 617-641.


Gaskel and Lau have formulated the CBC as follows. A numerical approximation to \hat{\phi_{w}} is bounded if:

  • for  0 \leq \hat{\phi_{W}} \leq 1 ,  \hat{\phi} is bounded below by the function \hat{\phi_{w}} = \hat{\phi_{W}} and above by unity and passes through the points (0,0) and (1,1)
  • for  \hat{\phi_{W}} \triangleleft  0 or  \hat{\phi_{W}} \triangleright 1 ,  \hat{\phi} is equal to  \hat{\phi_{W}}

The CBC is clearly illustrated in figure below, where the line \hat{\phi_{w}} = \hat{\phi_{W}} and the shaded area are the region over which the CBC is valid. The importance of the CBC is to provide a sufficient and necessary condition for guaranteeing the bounded solution if at most three neighbouring nodal values are used to approximate face values. It is well known that the positivity of finite-difference coefficients is also a sufficient condition for boundedness, but this is overly stringent, for the existense of negative coefficients does not neccesarily lead to over- or undershoots.

CBC 01.jpg

Schemes

Linear

SOU - Second Order Upwind (also LUDS or UDS-2)

S.P.Vanka ({{{year}}}), "Second-order upwind differencing ina recirculating flow", AIAA J., 25, 1435-1441.

R.F.Warming and R.M. Beam

Upwind second order difference schemes and applications in aerodynamics flows

AIAA J. 14 (1976) 1241-1249

Skew - Upwind

G.D.Raithby , Skew upstream differencing schemes for problems involving fluid flow, Computational Methods Applied Mech. Engineering, 9, 153-164 (1976)

QUICK - Quadratic Upwind Interpolation for Convective Kinematics (also UDS-3)

B.P.Leonard, A stable and accurate modelling procedure based on quadratic interpolation, Comput. Methods Appl. Mech. Engrg. 19 (1979) 58-98

LUS - Linear Upwind Scheme

H.C.Price, R.S. Varga and J.E.Warren , Application of oscillation matrices to diffusion-convection equations, Journal Math. and Phys., Vol. 45, p.301, (1966)

Fromm - Fromm's Upwind Scheme

CUDS - Cubic Upwind Difference Scheme (also CUS)

Non-Linear QUICK based

SMART - Sharp and Monotonic Algorithm for Realistic Transport

P.H.Gaskell and A.C.K. Lau, Curvature-compensated convective transport: SMART, a new boundedness preserving transport algorithm, International J. Numer. Methods Fluids 8 (1988) 617-641

SMARTER - SMART Efficiently Revised

J.K. Shin and Y.D. Choi

Study on the improvement of the convective differencing scheme for the high-accuracy and stable resolution of the numerical solution

Trans. KSME 16(6) (1992) 1179-1194 (in Korean)

WACEB

Song B., Liu G.B., Kam K.Y., Amano R.S.

On a higher-order bounded discretization schemes

International Journal for Numerical Methods in Fluids, 2000, 32, 881-897

VONOS - Variable-Order Non-Oscillatory Scheme

Varonos A., Bergeles G., Development and assessment of a Variable-Order Non-oscillatory Scheme for convection term discretization // International Journal for Numerical Methods in Fluids. 1998. 26, N 1. 1-16

CHARM - Cubic / Parabolic High-Accuracy Resolution Method

G.Zhou , Numerical simulations of physical discontinuities in single and multi-fluid flows for arbitrary Mach numbers, PhD Thesis, Chalmers University of Technology, Sweden (1995)

Gang Zhou, Lars Davidson and Erik Olsson

Transonic Inviscid / Turbulent Airfoil Flow Simulations Using a Pressure Based Method with High Order Schemes

Lecture notes in Physics, No. 453, pp. 372-377, Springler-Verlag, Berlin, (1995)

UMIST - Upstream Monotonic Interpolation for Scalar Transport

F.S.Lien and M.A.Leschziner , Upstream Monotonic Interpolation for Scalar Transport with application to complex turbulent flows, International Journal for Numerical Methods in Fluids, Vol. 19, p.257, (1994)

Fromm based

MUSCL - Monotonic Upwind Scheme for Conservation Laws

Lien F.S. and Leschziner M.A. , Proc. 5th Int. IAHR Symp. on Refind Flow Modelling and Turbulence Measurements, Paris, Sept. 1993

van Leer limiter

van Albada

OSPRE

ULTIMATE Universal Limiter

Chakravarthy-Osher limiter

Sweby \Phi - limiter

Superbee

MINMOD - MINimum MODulus

Harten A. High resolution schemes using flux limiters for hyperbolic conservation laws. Journal of Computational Physics 1983; 49: 357-393

A. Harten

High Resolution Schemes for Hyperbolic Conservation Laws

J. Comp. Phys., vol. 49, no. 3, pp. 225-232, 1991

ISNAS - Interpolation Scheme which is Nonoscillatory for Advected Scalars

Third-order flux-limiter scheme

M. Zijlema , On the construction of a third-order accurate monotone convection scheme with application to turbulent flows in general domains. International Journal for numerical methods in fluids, 22:619-641, 1996.


SOUCUP - Second-Order Upwind Central differnce-first order UPwind

Zhu J. (1992), "On the higher-order bounded discretization schemes for finite volume computations of incompressible flows", Computational Methods in Applied Mechanics and Engineering. 98. 345-360.

J. Zhu, W.Rodi (1991), "A low dispersion and bounded convection scheme", Comp. Meth. Appl. Mech.&Engng, Vol. 92, p 225.

COPLA - COmbination of Piecewise Linear Approximation

HLPA - Hybrid Linear / Parabolic Approximation

Zhu J. Low Diffusive and oscillation-free convection scheme // Communications and Applied Numerical Methods. 1991. 7, N3. 225-232.

Zhu J., Rodi W. A low dispersion and bounded discretization schemes for finite volume computations of incompressible flows // Computational Methods for Applied Mechanics and Engineering. 1991. 92. 87-96




In this scheme, the normalized face value is approximated by a combination of linear and parabolic charachteristics passing through the points, O, Q, and P in the NVD. It satisfies TVD condition and is second-order accurate

Usual variables

 
f_{w}= 
\begin{cases}
f_{w} + \left( f_{P} -  f_{W} \right) \hat{f_{C}} & 0 \leq \hat{f_{C}} \leq 1 \\ 
f_{W} & \hat{f_{C}} \triangleleft 0 \ , \ \hat{f_{C}} \triangleright 1
\end{cases}
(2)

Normalized variables - uniform grids

 
\hat{f_{w}}=  
\begin{cases}
\hat{f_{C}} \left( 2 -  \hat{f_{C}} \right) \hat{f_{C}} & 0 \leq \hat{f_{C}} \leq 1 \\ 
\hat{f_{C}} & \hat{f_{C}} \triangleleft 0 \ , \ \hat{f_{C}} \triangleright 1
\end{cases}
(2)

Normalized variables - non-uniform grids

 
\hat{f_{w}}= 
\begin{cases}
a_{w} + b_{w} \hat{f_{C}} + c_{w} \hat{f_{C}}^{2} & 0 \leq \hat{f_{C}} \leq 1 \\ 
\hat{f_{C}} & \hat{f_{C}} \triangleleft 0 \ , \ \hat{f_{C}} \triangleright 1
\end{cases}
(2)

where

 
a_{w} = 0  ,  

b_{w} = \left(y_{Q}- x^{2}_{Q} \right) /  \left(x_{Q}- x^{2}_{Q} \right)  , 


c_{w} = \left(y_{Q}- x_{Q} \right) /  \left(x_{Q}- x^{2}_{Q} \right)  ,
(2)

Implementation

Using the switch factors:

for \boldsymbol{U_w \geq 0}

 
\alpha^{+}_{w} =  
\begin{cases}
1 & \ if \ | \phi_{P} - 2 \phi_{W} + \phi_{WW}| \triangleleft | \phi_{P} - \phi_{WW} | \\
0 & otherwise 
\end{cases}
(2)

for \boldsymbol{U_w \triangleleft  0}

 
\alpha^{-}_{w} =  
\begin{cases}
1 & \ if \ | \phi_{W} - 2 \phi_{P} + \phi_{E}| \triangleleft | \phi_{W} - \phi_{E} | \\
0 & otherwise 
\end{cases}
(2)

and taken all the possible flow directions into account, the un-normalized form of equation can be written as

 
\phi_{w} = U^{+}_{w} \phi_{W} + U^{-}_{w} \phi_{P} + \Delta \phi_{w}
(2)

where

 
\Delta \phi_{w} = U^{+}_{w} \alpha^{+}_{w} \left( \phi_{P} - \phi_{W} \right) \frac{\phi_{W} - \phi_{WW}}{\phi_{P} - \phi_{WW}} + U^{-}_{w} \alpha^{-}_{w} \left( \phi_{W} - \phi_{P} \right) \frac{\phi_{P} - \phi_{E}}{\phi_{W} - \phi_{E}}
(2)
 
 U^{+}_{w} = 0.5 \left( 1 + \left| U_{w} \right| / U_{w} \right) \ , \ U^{-}_{w} = 1 - U^{+}_{w} \ \ \left( U_{w}\neq 0 \right)
(2)

CLAM - Curved-Line Advection Method

Van Leer B. , Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. Journal of Computational Physics 1974; 14:361-370


SHARP - Simple High Accuracy Resolution Program

B.P.Leonard, Simple high-accuracy resolution rogram for convective modelling of discontinuities, International J. Numerical Methods Fluids 8 (1988) 1291-1381

LPPA - Linear and Piecewise / Parabolic Approximasion

GAMMA

CUBISTA - Convergent and Universally Bounded Interpolation Scheme for the Treatment of Advection

M.A. Alves, P.J.Oliveira, F.T. Pinho, A convergent and Universally Bounded Interpolation Scheme for the Treatment of Advection // International Lournal For Numerical Methods in Fluids 2003, 41; 47-75

Summary of Discretizations Schemes

Discretizations Schemes Estimation of order

Selection advice

Comparison of Discretizations Schemes

Numerical examples

Pure convection of a scalar step by a rotating velocity field (Smith-Hutton test)

R.M.Smith and A.G.Hutton (1982), "The numerical treatment of advection: A performance comparison of current methods", Numerical Heat Transfer, Vol. 5, p439.


Square Lid-driven cavity flow

Example code for solving Smith-Hutton test

My wiki