CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > 2-D linearised Euler equation

2-D linearised Euler equation

From CFD-Wiki

(Difference between revisions)
Jump to: navigation, search
Line 4: Line 4:
:<math> \frac{\partial p}{\partial t}+\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+M\frac{\partial p}{\partial x}=0 </math>
:<math> \frac{\partial p}{\partial t}+\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+M\frac{\partial p}{\partial x}=0 </math>
:<math> \frac{\partial \rho}{\partial t}+\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+M\frac{\partial \rho}{\partial x}=0 </math>
:<math> \frac{\partial \rho}{\partial t}+\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+M\frac{\partial \rho}{\partial x}=0 </math>
 +
where  M is the mach number , speed of sound is assumed to be 1, all the variabled refer to acoustic perturbations over the mean flow.
 +
:Domain [-50,50]*[-50,50]
 +
:Initial Condition
 +
:Boundary Condition
 +
:Numerical Method
 +
:Results
 +
:Reference

Revision as of 02:08, 8 October 2005

Problem Definition

 \frac{\partial u}{\partial t}+M \frac{\partial u}{\partial x}+\frac{\partial p}{\partial x}=0
 \frac{\partial v}{\partial t}+M \frac{\partial v}{\partial x}+\frac{\partial p}{\partial y}=0
 \frac{\partial p}{\partial t}+\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+M\frac{\partial p}{\partial x}=0
 \frac{\partial \rho}{\partial t}+\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+M\frac{\partial \rho}{\partial x}=0

where M is the mach number , speed of sound is assumed to be 1, all the variabled refer to acoustic perturbations over the mean flow.

Domain [-50,50]*[-50,50]
Initial Condition
Boundary Condition
Numerical Method
Results
Reference
My wiki