From CFD-Wiki
!Sample program for solving Lid-driven cavity flow test using SIMPLE-algorithm
! solution of momentum equation for U and V modul
! Copyright (C) 2010 Michail Kiričkov
! Copyright (C) 2016 Michail Kiričkov, Kaunas University for Technology
!This program is free software; you can redistribute it and/or
!modify it under the terms of the GNU General Public License
!as published by the Free Software Foundation; either version 2
!of the License, or (at your option) any later version.
!This program is distributed in the hope that it will be useful,
!but WITHOUT ANY WARRANTY; without even the implied warranty of
!MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
!GNU General Public License for more details.
!You should have received a copy of the GNU General Public License
!along with this program; if not, write to the Free Software
!Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
!**********************************************************************
Subroutine Solve_UV
include 'icomm_1.f90'
Istoch_nar = 0.;
! calculation of fluxes
! all geometry has rectangular 2D notation
Do 100 I= 2,NXmax
Do 100 J= 2,NYmax
Gam_e = ( Gam(i+1,j ) + Gam(i ,j ) ) * 0.5
Gam_w = ( Gam(i-1,j ) + Gam(i ,j ) ) * 0.5
Gam_s = ( Gam(i ,j-1) + Gam(i ,j ) ) * 0.5
Gam_n = ( Gam(i ,j+1) + Gam(i ,j ) ) * 0.5
!----------------------------------------------------
Area_w = Y(i-1,j)-Y(i-1,j-1)
Area_e = Y(i ,j)-Y(i ,j-1)
Area_s = X(i,j-1)-X(i-1,j-1)
Area_n = X(i,j )-X(i-1,j )
!----------------------------------------------------
Del_w = Xc(i ,j)-Xc(i-1,j)
Del_e = Xc(i+1,j)-Xc(i ,j)
Del_s = Yc(i,j )-Yc(i,j-1)
Del_n = Yc(i,j+1)-Yc(i,j )
!----------------------------------------------------
! upwind differencing (all other will be included into the source term)
Conv_w = Area_w * ( F(i,j,1) + F(i-1,j ,1) ) * 0.5
Conv_e = Area_e * ( F(i,j,1) + F(i+1,j ,1) ) * 0.5
Conv_s = Area_s * ( F(i,j,2) + F(i ,j-1,2) ) * 0.5
Conv_n = Area_n * ( F(i,j,2) + F(i ,j+1,2) ) * 0.5
if(i.eq.2 )Conv_w = 0.
if(i.eq.NXmax)Conv_e = 0.
if(j.eq.2 )Conv_s = 0.
if(j.eq.NYmax)Conv_n = 0.
Diff_e = Area_e * Gam_e / Del_e
Diff_w = Area_w * Gam_w / Del_w
Diff_s = Area_s * Gam_s / Del_s
Diff_n = Area_n * Gam_n / Del_n
Aw(i,j) = Diff_w + max( Conv_w,0.)
Ae(i,j) = Diff_e + max(-1.* Conv_e,0.)
As(i,j) = Diff_s + max( Conv_s,0.)
An(i,j) = Diff_n + max(-1.* Conv_n,0.)
Check_Flux(i,j) = Conv_e - Conv_w + Conv_s - Conv_n
Ap(i,j,1:2)= Aw(i,j) + Ae(i,j) + An(i,j) + As(i,j)! + Check_flux(i,j)
Sp(i,j,1:2)= 0.
Istoch_nar_abs = Istoch_nar_abs + ABS(Check_Flux(i,j))
Istoch_nar_whole = Istoch_nar_whole + (Check_Flux(i,j))
!-------------------------------- HLPA SCHEME----------------------------
go to 600 ! (now HLPA is "off")
DO 500 nf=1,2
! Subroutine HLPA(Uw,Fww,Fw,Fp,Fe,Delta_f)
if( (i.GT.2).AND.(i.LT.NXmax-0).and.(j.GT.2).AND.(j.LT.NYmax-0) ) then
!------------------ w face -------------------
Fww = F(i-2,j,nf)
Fw = F(i-1,j,nf)
Fp = F(i ,j,nf)
Fe = F(i+1,j,nf)
call HLPA(Conv_w,Fww,Fw,Fp,Fe,Delta_f)
Sp(i,j,nf) = Sp(i,j,nf) + Conv_w * Delta_f
!------------------ e face--------------------
Fww = F(i-1,j,nf)
Fw = F(i ,j,nf)
Fp = F(i+1,j,nf)
Fe = F(i+2,j,nf)
call HLPA(Conv_e,Fww,Fw,Fp,Fe,Delta_f)
Sp(i,j,nf) = Sp(i,j,nf) + Conv_e * Delta_f * (-1.)
!------------------ s face--------------------
Fww = F(i ,j-2,nf)
Fw = F(i ,j-1,nf)
Fp = F(i ,j ,nf)
Fe = F(i ,j+1,nf)
call HLPA(Conv_s,Fww,Fw,Fp,Fe,Delta_f)
Sp(i,j,nf) = Sp(i,j,nf) + Conv_s * Delta_f
!------------------ n face--------------------
Fww = F(i ,j-1,nf)
Fw = F(i ,j ,nf)
Fp = F(i ,j+1,nf)
Fe = F(i ,j+2,nf)
call HLPA(Conv_n,Fww,Fw,Fp,Fe,Delta_f)
Sp(i,j,nf) = Sp(i,j,nf) + Conv_n * Delta_f *(-1.)
end if
500 continue
600 continue
!------------------------------------------------------------------------
100 continue ! coefficient cycle
!----------------------------- pressure gradient ------------------------
Do 200 I= 2,NXmax
Do 200 J= 2,NYmax
DX = X(i,j) - X(i-1,j)
DY = Y(i,j) - Y(i,j-1)
VOL = DX * DY
PE = ( F(i,j,4) + F(i+1,j,4) ) * 0.5
PW = ( F(i,j,4) + F(i-1,j,4) ) * 0.5
PN = ( F(i,j,4) + F(i,j+1,4) ) * 0.5
PS = ( F(i,j,4) + F(i,j-1,4) ) * 0.5
DPx_c(i,j) = (PE-PW)/DX
DPy_c(i,j) = (PN-PS)/DY
Sp(i,j,1) = Sp(i,j,1) - DPx_c(i,j) * VOL
Sp(i,j,2) = Sp(i,j,2) - DPy_c(i,j) * VOL
200 continue
!---------------------------- under-relaxation ---------------------------------
Alfa = 0.8
Urf = 1. / Alfa
Ap(1:NXmaxC,1:NYmaxC,1) = Ap(1:NXmaxC,1:NYmaxC,1) * Urf
Sp(1:NXmaxC,1:NYmaxC,1) = Sp(1:NXmaxC,1:NYmaxC,1) + (1. - Alfa )* &
Ap(1:NXmaxC,1:NYmaxC,1)*F(1:NXmaxC,1:NYmaxC,1) ! / Alfa
Ap(1:NXmaxC,1:NYmaxC,2) = Ap(1:NXmaxC,1:NYmaxC,2) * Urf
Sp(1:NXmaxC,1:NYmaxC,2) = Sp(1:NXmaxC,1:NYmaxC,2) + (1. - Alfa )* &
Ap(1:NXmaxC,1:NYmaxC,2)*F(1:NXmaxC,1:NYmaxC,2) ! / Alfa
!---------------------------------------------------------------------------------
niter = 0
write(*,*)'solve U'
call Convergence_Criteria(1,Res_sum_before,niter)
10 continue
niter= niter + 1
Call TDMA_1(1)
call Convergence_Criteria(1,Res_sum_After,niter)
If((abs(Res_sum_before-Res_sum_After).Ge.1.00E-10).and.niter.le.550)then
Res_sum_before = Res_sum_After
go to 10
End if
niter = 0
write(*,*)'solve V'
call Convergence_Criteria(2,Res_sum_before,niter)
20 continue
niter= niter + 1
Call TDMA_1(2)
call Convergence_Criteria(2,Res_sum_After,niter)
If((abs(Res_sum_before-Res_sum_After).Ge.1.00E-10).and.niter.le.550)then
Res_sum_before = Res_sum_After
go to 20
End if
!---------------------------------------------------------------------------------
Return
End